查查知识网

有理数和无理数的区别 有理数和无理数例子

发布者:丁阳
导读初一上册,学生们学的第一章就是负数,继而扩充到有理数和无理数,其中无理数的大小比较是一种常考题目, 而且随着学习的数的范围越来越多,越来越广,比较数的大小的难就越来越大了.在小学首先学整数、分数、小数

初一上册,学生们学的第一章就是负数,继而扩充到有理数和无理数,其中无理数的大小比较是一种常考题目, 而且随着学习的数的范围越来越多,越来越广,比较数的大小的难就越来越大了.在小学首先学整数、分数、小数的大小比较;到了七年级学有理数的大小比较,但这一切还比较简单,因为在七年级学了数轴,以及一切数都能在数轴上表示出来的特点,根据数轴的特点,右边的数总比左边的数大.但在八年级学了无理数,难度就大多了,它不光是单独的一个无理数进行比较,而是两个叠加,这样就不能从数轴上表示出来,学生拿到此题是无从着手,摸不到头.因此,能有的放矢的做好无理数的大小比较,也显得尤为重要.下面就介绍几种无理数的大小比较方法。

一、直接比较法

例题:

例题1

思路:直接比较法就是直接比较,例题也比较简单。同是正数,根据无理数和有理数的联系,被开数大的那个就大;同是负数,根据无理数和有理数的联系,同是负数绝对值大的反而小;一正一负,根据正数大于一切负数,即可直接比较出两个无理数的大小.

答案:(1)∵13<17,∴

(2)同理可得

(3)一个为正数,一个为负数,所以正数>负数。∴

二、分母有理化法

例题:

例题2

思路:首先找分母有理化因子,分别将这两个无理数进行分母有理化,然后利用分式的性质将它们转化为同分母的形式,最后比较分子,即可得出答案.

答案:

例题2 答案

思路:比较两个分子或分母中含有二次根式的无理数大小时,通常可先将分母有理化,可将复杂无理数简单化,易于比较.

答案:

三、分子有理化法

例题:

例题3

思路:与例2相似,只要找到它们的有理化因子,并转化为分子相同的形式,然后根据“分子相同分母大的反而小”即可比较出大小.

答案:

四、平方法

例题:

例题4

思路:对于两个正无理数,我们可以通过比较这两个数的平方的大小,即“谁的平方大,它就大”的方法来确定这两个无理数的大小.

答案:

例题4答案

【巩固练习】

练习1:

练习1

练习2:

练习2

练习3:

练习3

练习4:

练习4

练习5:

练习5

练习6:

练习6

练习7:

练习7

练习8:

练习8

练习9:

练习9

练习10:

练习10

【巩固练习答案解析】

答案1:

答案1

答案2:

答案2

答案3:

答案3

答案4:

答案4

答案5:

答案5

答案6:

答案6

答案7:

答案7

答案8:

答案8

答案9:

答案9

答案10:

答案10

整理不易,如果对你有帮助,请点赞+转发+关注。我将持续更新对你有用的知识。[来看我][来看我][来看我]

@数学对我下手了